无码精品人妻一区二区三区漫画,学长早晨含巨龙起床h男男,欧美亚洲精品suv,乖宝撞的你舒不舒服h

歡迎來(lái)到冀群(江蘇)儀器有限公司網(wǎng)站!
咨詢(xún)熱線(xiàn)

13236572657

當(dāng)前位置:首頁(yè)  >  技術(shù)文章  >  英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

更新時(shí)間:2021-11-30  |  點(diǎn)擊率:1745

英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


精品人妻人人爽久久爽av蜜桃| 又粗又爽高潮午夜免费视频| 玩弄人妻aa性色少妇| 一天不日就痒痒| 吸咬奶头狂揉60分钟视频| 麻豆国产一区二区三区四区| 无码人妻丰满熟妇啪啪网站牛牛| 伊人久久大香线蕉综合75| 老汉噗嗤一声整根全进视频| 免费毛片在线看不用播放器| 高h全肉np放荡日记| 欧美日韩中文国产一区发布| 久久精品国产亚洲av高清热| 精品国产三级a∨在线| 少妇和公翁系列小说| 亚洲av精品无码国产一区| 午夜视频在线观看| 荫蒂添的好舒服视频囗交| barazza厨房乱战| 丝袜美腿一区二区三区| 麻豆乱码国产一区二区三区| 又大又粗又硬又长| 把高冷校花压在桌上进进出| 丰满少妇a级毛片露出偷拍| 40厘米黑人与中国女人| 久久精品中文字幕一区二区三区 | 老中医吮她的花蒂和奶水视频播放| 亚洲人成在线观看| 99久久久无码国产精品6| 国产黄色视频| 羞耻play公共场所h调教| 六十路垂乳熟年交尾| 韩国三级hd中文字幕| 学长边洗澡边把我处破了小说| 国产精品乱码一区二区三区| 性色av浪潮av蜜桃av| 精品人伦一区二区三区蜜桃| 被狼交的女人(h)| 乡下人产国偷v产偷v自拍| 最新精品国偷自产在线69| 西西人体艺术|